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ABSTRACT
Works on adversarial example generation for NLP models have
proliferated in recent years. Unfortunately, defensive works have
not kept pace. There is currently a dearth of defenses leaving only
one robust defense against adversarial word substitution: interval
bound propagation (IBP). Using IBP as a certified defense allows one
to prove robustness against a large set of adversarial perturbations
on a given text. However, this defense technique is not without
its drawbacks. Currently, IBP has not been adapted to work with
newer, better performing contextual embeddings. This work seeks
to understand a) The generalizability of IBP for state-of-the-art
models and datasets b) How IBP scales when applied across nu-
merous popular NLP tasks. Throughout our experiments, we also
examine the dependency of IBP on the depth of the network and
complexity of task involved.

1 INTRODUCTION
Deep neural networks (DNNs) have been shown to excel in many
domains including visual tasks as well as natural language process-
ing (NLP) tasks. However, it has been shown that neural networks
generalize poorly to attacks known as adversarial examples [6, 17].
In traditional machine learning (ML) settings, a neural network can
be used as a classifier, learning to label each input as a particular
class. In the setting of adversarial machine learning, an attacker
generates perturbations on an input x resulting in a new input,
an x’, with the goal of changing the classification output. While
most work involving adversarial ML is in the image domain, recent
work in adversarial natural language processing demonstrates that
these adversarial examples can easily be found by performing some
actions with the text. For example, Li et al [13] used character-level
substitutions to generate adversarial examples, but these can be
filtered out via a spellchecking system. Certain concatenation based
adversarial example generation also work well in adversarial set-
tings [10], such as adding distracting text [11] to the input to fool
a reading comprehension classifier or paraphrasing the text [9]
to significantly degrade the performance of the model. Alzantot
et al [1] discovered using word-level substitutions, like replacing
words with synonyms, which our work aims to further explore. An
example of such an adversarial example taken from [12] is shown
in Figure 1. This suggests that NLP models are extremely brittle to
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Figure 1: Word substitution-based perturbations in sentiment analysis.
For an input x, we consider perturbations �̃� , in which every word 𝑥𝑖 can
be replaced with any similar word from the set 𝑆 (𝑥, 𝑖) , without changing
the original sentiment. Models can be easily fooled by adversarially chosen
perturbations (e.g., changing “best” to “better”, “made” to “delivered”, “films”
to “movies”), but the ideal model would be robust to all combinations of
word substitutions.

the adversarial perturbations of source texts. Modest improvements
to robustness can be found from using a technique known as ad-
versarial training [14], but adversarial training in NLP has several
drawbacks: a) In NLP, the number of possible transformations scales
exponentially with text length and b) The defense is not guaran-
teed to be effective against newer perturbations that an adversary
could come up with. To combat the growing number of attacks
and provide certified robustness, Jia et al [12] proposed a defence
against word substitutions using interval bound propagation (IBP).
Further background on their work is provided in Section 2.5. Our
contributions include extending Jia et al’s work[12] by evaluating
the parameters of IBP in detail. We suspect that the same word-level
robustness guarantees will hold for sentences for a BERT[3] model
deployed with IBP with minor changes.

2 BACKGROUND
At the time of writing this report, there were two papers published
on using Interval Bound Propagation (IBP) to provide certifiable ro-
bustness in Natural Language Processing tasks. Interestingly, both
the papers only consider the task of text classification. In this sec-
tion, we provide a brief introduction to these techniques starting
with a brief background of counter-fitted and contextual embed-
dings followed with a discussion of the two papers implementing
IBP in NLP.

2.1 Counter-Fitted Embeddings
The first generation of word embeddings consisted of embeddings
based on word co-occurrence matrices. Counter-fitted embeddings
arose in response to a common criticism of such word embeddings:
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that synonyms and antonyms often share similar contexts and thus
are often overly close to each other in the resulting word embedding
topology. In order to solve this problem, Mrksic et. al. provide a new
objective function containing three terms: an antonym repelling
term, a synonym attracting term, and a vector space preservation
term. These terms are illustrated in Figures 4, 5, and 6, respectively.
The end result of this objective function is to encourage three things:
disparate placement of antonyms, similar placement of synonyms,
and preservation of the original semantic information latent in the
original embeddings being used. This objective function is shown
in Figure 7. The reason counter-fitted embeddings were created was
due to the fact that word embeddings were static entities, which
were a conglomeration of the many different contexts in which a
given word was seen in training, and because either a synonym or
its antonym is highly likely to appear in a given context, the static
nature of the embeddings weighed both possibilities near equally.
An small sample of word vectors and their nearest neighbors both
before and after counter-fitting is supplied in Figure 2.

2.1.1 Application of Counter-Fitted Embeddings. Later on, Alzan-
tot et. al. found another interesting use for counter-fitted embed-
dings as an adversarial tool. Alzantot used the counter-fitted em-
beddings to aid in generating adversarial examples for contextual
entailment and sentiment analysis tasks. This work was able to
leverage the new information gained through the use of counter-
fitted embeddings to construct effective adversarial examples.

2.2 Contextual Embeddings
Recently, the idea of contextual embeddings was developed [16].
This idea furthers the distributional hypothesis-based approach
used in the development of earlier word embeddings by allowing
word embeddings to be variable based on their context. As a re-
sult, individual word vectors no longer have to cover the gamut of
possible contexts and can more closely be adapted to the scenario
they are being employed in. Other work [4] shows that contextual
embedding vectors for a given word vary greatly in practice, so
more information is being encoded in contextual vectors than is
encoded in vanilla word vectors.

2.3 Language Modeling
Language modeling centers around the task of assigning probabili-
ties to the occurrence of a word or sequence of words. Language
models assign these probabilities by learning occurrences of various
words or sequences of words present in a training set. Quantitatively
speaking, language model training occurs through the maximiza-
tion of the log probability of the next occurring word or sequence of
words. This measure is known as the perplexity score and is defined
below

𝑃𝑃 (𝑊 ) = 2−𝑝

where

𝑝 =
1
𝑁

𝑛∑
𝑖=1

𝑙𝑜𝑔2𝐿𝑀 (𝑤𝑖 |𝑤1:𝑖−1)

2.4 Gowal’s Flavor of IBP
Interval bound propagation was first proposed by Gowal et al [7] to
propose fast and stable learning algorithm which results in neural

networks that are provably robust to norm-bounded perturbations.
Their main focus at the time was to prove this robustness for im-
age inputs. The key idea is to minimize an upper bound on the
worst case loss over all perturbations bounded in a given norm.
This method was extremely effective for images but could not be
applied directly to text inputs because texts are relatively discrete
in comparison to images

2.5 Jia’s Flavor of IBP
Jia et. al. [12] recently extended IBP to text domain by consider-
ing word substitutions.A visualization of Jia’s bounding process
is given in Figure 3. They essentially create a multi-dimensional
loss boundary around a given word vector representation with
the aim of not allowing similar words to change the model’s end
decision [12]. This implementation depends on bounding the ac-
tivation functions propagated by each logit in the network being
used; using this technique, they were able to certify roughly 75% of
movie review samples from the IMDB dataset against all adversar-
ial perturbations. In the paper, it is not immediately clear whether
this approach is fully generalized to work with the stat-of-the-art
contextual embeddings like BERT [3]. Further, it is not immediately
clear whether the bounds are dependent on the depth of the net-
work or how does this defence generalize for other NLP tasks and
attacks (they only considered word substitutions in their work).

Figure 2: Nearest neighbours for target words using GloVe vectors before
and after counter-fitting.

3 METHODOLOGY
Our overall goal for this work was to establish a significant and
comprehensive understanding of how interval bound propagation
is affected by scale and determine the extent that it can be gener-
alized. To this end, we conducted experiments to understand the
extent of accuracy and certified robustness degradation on several
different datasets, models, and tasks. Once we have an empirical
understanding of how IBP works in practice, we can then begin to
prescribe improvements, which will be based on the faults we find
through our experiments.
In order to determine whether accuracy or certified robustness
degrade as model depth increases, we adapted the interval bound
propagation code provided by Jia et. al. [12] and recorded the accu-
racy, certified robustness, and model loss. Word embeddings play
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Figure 3: Bounds on the word vector inputs to the neural network. Con-
sider a word (sentence of length one)𝑥 = 𝑎 with the set of substitution words
𝑆 (𝑥, 1) = 𝑎,𝑏, 𝑐,𝑑, 𝑒 . (a) IBP constructs axis-aligned bounds around a set
of word vectors. These bounds may be loose, especially if the word vectors
are pre-trained and fixed. (b) A different word vector space can give tighter
IBP bounds, if the convex hull of the word vectors is better approximated
by an axis-aligned box.

Figure 4: Antonym repel (AR) term for the counter-fitting embedding
training process. This term pushes word pairs that are antonyms away
from each other in the embedding space,𝑉 ′. Here, the function, 𝑑 , uses the
cosine similarity metric, 𝜏 is a cost margin factor, and 𝛿 serves as the "ideal"
minimum distance between two antonyms. In Mrksic et. al.’s experiments,
𝛿 = 1.

Figure 5: Synonym attract (SA) term for the counter-fitting embedding
training process. This term brings synonym pairs closer together in the em-
bedding space,𝑉 ′. 𝛾 is the "ideal" maximum distance between synonymous
words. Mrksic et. al. use 𝛾 = 0.

Figure 6: Vector space preservation (VSP) term for the counter-fitting
embedding training process. This term is intended to preserve the topology
of the original, un-counter-fitted embedding space in the generated counter-
fitted embeddings. The intuition behind the use of this term is that one
would wish to preserve semantic relationships in the original word vectors.
Note that 𝑁 (𝑖) is the set of words within a radius, 𝜌 around the 𝑖 − 𝑡ℎ

word’s vector in the original vector space V. Mrksic et. al.’s experiments
indicated that counter-fitting is relatively insensitive to the choice of 𝜌 .

a pivotal role in the adversarial defense process, so we would be
remiss to avoid an in-depth analysis of their current characteristics.
Another important thing to note is that the IBP method proposed in
[12] uses word embeddings to create the bounds. However, most of
the new classification frameworks use sentence embeddings which
are generated using Language models [3]. Hence it is important
to understand if we the proposed IBP method can be extended to
language modeling tasks. Due to lack of time, we were not able

Figure 7: The complete objective function for the counter-fitting training
procedure. Note that 𝑘1, 𝑘2, and 𝑘3 are each hyperparameters.

to finish the language model training task with IBP, however, we
conducted several experiments to shed light on our intuition as to
why IBP may have trouble scaling to different NLP tasks. These
experiments are discussed in Section 4

4 EVALUATION
To understand the effectiveness of IBP for state-of-the-art NLP
models, we adopt Jia et. al.’s work and evaluate its effectiveness
with new datasets and larger architectures. Then, we measure the
performance of the adapted system for a range of common NLP
tasks and datasets including: sentiment analysis, the aforemen-
tioned language modeling, and contextual entailment to uncover
the mechanisms at work behind the defense.

As a substitute for language modelling task, we conducted ex-
periments to see how changing a word with similar words affects
the document embedding. We analyze this for four different embed-
dings - Glove (used by the original authors), BERT (contextual word
vectors based on Transformers [18], Elmo (contextual word vectors
based on biLSTM) and USE (Universal Sentence Encoder based
on attention and transformers). To understand the dependency of
these results, we examined these on both the twitter dataset and
the ACLIMDB dataset.

4.1 Datasets
To confirm our aforementioned hypothesis, we evaluated the IBP
defenses on the following datasets:

(1) IMDB Movie Reviews (50,000 reviews, 265 AWL1)
(2) Twitter 140 Sentiment (1.6 million tweets, 16 AWL)
(3) Amazon Kindle Reviews (742,767 reviews, 108 AWL)
The Amazon Kindle dataset is a custom-made subset of the Ama-

zon Reviews dataset[15]. Using only reviews on e-books (Kindle
books), we specially curated it to have its own vocabulary and
counter-fitted vectors, but we were, unfortunately, unable to repli-
cate this for the Twitter dataset[5] due to time and resource con-
straints. Having custom vocabulary entries and vectors allows the
certification procedure to access a larger set of synonym choices
for word substitution. This access to all the possible permutations,
in turn, creates a more defined decision boundary and improves
accuracy.

Using these datasets, we performed several experiments testing
the number of hidden neurons and the datasets to see how accuracy
would be impacted. Earlier, we postulated that models using IBP
won’t scale well as the number of layers in the model increases since
IBP needs to bound every input at each layer. The progressively
looser bounds that result as the model passes more bounds forward
become less useful and impact accuracy. In Table 1, the results
show a correlation between the deeper networks and a drop in
both natural and certified accuracy. For the Amazon Kindle Review

1Average Word Length
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dataset, the drop in natural accuracy is over 7 percentage points
and the drop in certified accuracy is over 13 percentage points.
This is a significant decrease in effectiveness, especially for the
binary classification task of sentiment analysis. In practice, each
percentage point loss in accuracy is a large monetary loss for a
deployed model. This, paired with the fact that many state of the
art models employ over 10 layers, shows that this problem needs
addressing.

Dataset | # Layers 1 3 5 7 9

IMDB Acc 81.3% 77.7% 73.8% 78.2% 77.83
IMDB Cert 73.6% 68.0% 64.9% 64.0% 58.38

Twitter Acc 75.68% 73.89% 73.82% 73.98% 73.42%
Twitter Cert 64.43% 60.75% 59.41% 59.76% 60.52%

Amazon Acc 85.28% 80.57% 79.29% 78.42% 77.66%
Amazon Cert 79.10% 70.22% 68.87% 67.17% 65.52%

Table 1: The natural accuracy and certified accuracy of the IMDB, Twitter,
and Amazon sentiment analysis datasets. Evaluated on different numbers
of layers of CNNs. All models were trained until convergence (about 10
epochs).

Table 2 confirms also confirms the notion that a larger vocabulary
and counter-fitted vector set size results in a more generalizable IBP
model. The difference in natural and certified accuracy for the 1-
layer CNN is about 5 and 10 percentage points respectively. Finally,
In Table 3, we find that the number of hidden neurons within a layer
doesn’t significantly impact both the natural and certified accuracy
for 1-layer CNNs. This is consistent with our earlier hypothesis
that the only thing that will affect the IBP bounds is the model
architecture’s depth.

Vocabulary | # Layers 1 3

Custom-Amazon Acc 85.28% 80.57%
Custom-Amazon Cert 79.10% 70.22%

IMDB-Amazon Acc 80.73% 79.45%
IMDB-Amazon Cert 68.67% 66.53%

Table 2: The natural accuracy and certified accuracy of the Amazon Kindle
Review Dataset. The model trained using the custom Amazon vocabulary
and counter-fitted vectors performed better than the model trained on only
the default IMDB vocabulary and vectors.

Dataset | # Neurons 100 400 800

IMDB Acc 81.20% 81.82% 81.92%
IMDB Cert 66.72% 67.94% 66.42%

Twitter Acc 74.56% 75.48% 75.39%
Twitter Cert 61.72% 62.37% 62.23%

Table 3: The natural accuracy and certified accuracy of the Twitter and
IMDB sentiment analysis datasets. Evaluated on 1-layer CNNs with the
number of hidden neurons as a parameter.

4.2 Embeddings
As mentioned above, the goal of the experiments conducted with
several embeddings was to understand how do the embeddings of
the complete sentence/document vary if we use word substitution.
To understand this, we generated document embeddings with Glove,
BERT[3], ELMO[16] and USE[2]. The first three of these are word-
level embeddings, so we averaged the resulting vectors of each
word in a sentence to get the sentence embedding, as is the accepted
practice. For the Universal Sentence Encoder (USE), the input to
the network is the entire text of the document. Next, to understand
the variance in these embeddings, we perform word substitutions
where a randomly chosen word is replaced with its similar word as
found in the counter-fitted embeddings. Finally, we generate the
sentence-level embeddings and take the cosine distance between
the vectors of the original document and the perturbed document.
Due to time constraints, we only allowed single-word substitutions.

To evaluate our claims on embeddings’ effects on accuracy, we
calculate the cosine distance between original sentences found in
the IMDB and Twitter datasets and the perturbed (adversarially
generated) sentences. The results of this analysis are shown in Fig-
ures 8,9,10, and 11. Here, a cosine distance of 0 implies that the
sentences are highly similar. We find that the synonym substitu-
tions on the IMDB dataset 8 are less spread out when compared
to the Twitter dataset. This is because the average word length of
the IMDB dataset was about 265 words whereas the average word
length was 16 in the Twitter dataset. When the vectors are averaged
to produce the sentence embeddings, the change due to the per-
turbed word gets averaged out. We also see that certain embeddings
also perform better than others. In particular, on IMDB dataset 8,
the word level embeddings perform better than the sentence level
embeddings. This can again be attributed to the averaging effect
of the word vectors. The performance is dataset-dependent: our
accuracy measurements from Section 4.1 are reflected in the embed-
dings as well. The GloVe embeddings have a much higher overall
cosine distance in the Twitter dataset than in the IMDB dataset.
This points to evidence of the earlier-discussed correlation between
accuracy and word vector distribution. Furthermore, we provide
median statistics in Figure 11 and Figure 9 to provide an intuition
as to how the embedding space is distributed for the datasets we
have examined.

Intuitively, if similar word vectors within embedding spaces are
too spread out, the bounding procedure can result in unnecessary
accuracy drops that include many false positives in the bounded
region.We illustrate a simplified example of this in Figure 12. Rather
than attempt to find a better bounding procedure, it may be better
to first examine how embedding spaces are currently being filled,
and it’s also important to derive other ways to populate the many-
dimensional embedding spaces in a way that allows pockets of
easily bounded words to be formed. The goal is to form bounds
which more closely mimic a human-level, common sense approach
while simultaneously including as few false positives as possible.

5 FUTUREWORK
Initially, we thought that generalizing IBP for NLP tasks might
benefit from a new bounding procedure. After some study, we came
to the conclusion that the bounding procedure would need to gain a
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Figure 8: The average cosine distance between the original embeddings
and the adversarial word-substitution generations. Depicted are embed-
dings for USE, ELMo, GloVe, and BERT on the IMDB dataset. The distances
between the original and perturbed inputs are all fairly small with the
exception of the ELMo embeddings.

Figure 9: The median cosine distance between the original embeddings
and the adversarial word-substitution generations. Depicted are embeddings
for USE, ELMo, GloVe, and BERT on the IMDB dataset. Once again, all
distances are small except for ELMo.

significant amount of complexity in order to become more efficient,
essentially having to learn how to navigate the semantic embedding
space adaptively somehow. Given the slowdowns already inherent
in the use of the existing bounding procedure, we decided to forego
this approach, as it likely would have further bogged down training
time. Given our stated goal of generalizing IBP to larger and more
current model architectures, the prospect of even slower training
times would be self-defeating. In light of this development, we de-
cided to examine the possibility of improving the word embeddings
themselves.

5.1 Counter-fitting Limitations
The established method of counter-fitting provided by Mrksic et. al.
explicitly relies on shaping the counter-fitted embeddings around
the original population of the embedding spaces during training to
create new counter-fitted embedding-based populations. Secondly,

Figure 10: The average cosine distance between the original embeddings
and the adversarial word-substitution generations. Depicted are embeddings
for USE, ELMo, GloVe, and BERT on the Twitter dataset. The distances are
quite large and varied, especially for the ELMo and GloVe embeddings.

Figure 11: The median cosine distance between the original embeddings
and the adversarial word-substitution generations. Depicted are embeddings
for USE, ELMo, GloVe, and BERT on the Twitter dataset. The distances are
quite large and varied, especially for the ELMo and GloVe embeddings.

the notion of synonyms being attracted and antonyms being re-
pelled is used in the training of counter-fitted embeddings, along
with the aforementioned shaping procedure mentioned above. This
is an effective way of dealing with synonym and antonym pairs,
but it lacks the nuance to deal with words that do not have obvious
synonyms or antonyms that one could find in a dictionary entry.
Furthermore, the notion of using synonyms or antonyms only ac-
counts for two ends of a varied and complex spectrum of word
meanings that can be derived from their appearance in the context
of an arbitrary sentence.

To bolster this point, it is useful to look at how many synonym
and antonym pairs appear in common subsets of English seen in
practice. Mrksic et. al. complete this kind of analysis on a frequently
used subset of English provided as subtitles for recent movies. In
their analysis, out of the roughly 76 thousand words surveyed
from the subtitle dataset, roughly 13 thousand antonym pairs and
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Figure 12: An imagined sample bounding problem similar to something
that could occur in practice. Here, we see three sentences, two of which are
intended to be classified as the same label, and one of which is intended
to be classified as a different label. This figure illustrates how overly large
bounds can potentially degrade model accuracy.

31 thousand synonym pairs were found. The root synonyms and
antonyms were provided through manual human construction,
which will likely confound scaling efforts. Additionally, the syn-
onym and antonym pair discrepancy also limits the effectiveness
of one half of the counter-fitting approach. Mrksic et. al.’s concept
of squeezing and expanding words in the embedding space was
limited by the technology of their time. If we want to find a way to
better apportion every word in a set of word embeddings, it seems
necessary to add a notion of a similarity spectrum, as opposed to
only accounting for synonyms and antonyms. Recently, contextual
embeddings, such as those of BERT[3], ULMFiT[8], and others have
allowed us to quantitatively determine the meaning of a word by de-
termining its current context. This idea is precisely what is needed
to apply a more nuanced spacing approach when counter-fitting
word embeddings. Therefore, we plan to adapt this concept into
a new training approach, which is constructed to compress or ex-
pand inputted word embeddings by using the degrees of similarity
present in the contexts being considered during training. Thus, we
aim to continue with the spirit of Mrksic et. al.’s work and gener-
alize their concept by using contextual artifacts to determine, in a
more fine-grained manner, how close or far two contexts should be
in the embedding space.
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Figure 13: A very rough sketch of the intuition we aim to apply to con-
textual embeddings construction in our future work. Here, the takeaway
is that we aim to align similar words in similar contexts along the same
subspaces of the embedding space. The best way to accomplish this is still
an open problem for us, but the much larger embedding space provided
by contextual vectors should allow an approach like this to work while
preserving more accuracy than if this idea was applied to vanilla word
embeddings. PCA could be of use here.

5.2 Future Experimental Architectures
Going forward, we plan to implement a range of current model
architectures and measure the efficacy of our Contextual Adversar-
ial Embeddings on deeper and more complex models. Some of the
models we will experiment on are to be determined at this time. But,
we do plan to adapt Gowal et. al.’s [7] published CNN architectures
for various NLP tasks.

Figure 14: Shown above are the experimental CNN architectures used by
Gowal et. al. in their IBP computer vision defense work. We aim to replicate
the architectures used by Gowal et. al. in the NLP domain and examine their
transferability as these models have been demonstrated to be successful for
IBP applications.

5.3 Embedding Generation Goals
Though the exact methods through which we will train and gener-
ate adversary-resistant embeddings are currently undecided, we do
know the tenets that are axiomatic for our future work. They are
as follows:

• Two word vectors should be close in the embedding space if
and only if they are being used in a similar context and are
similar words.
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• Similar contexts should be encouraged to be directed along
similar dimensional sub-spaces while also encouraging dif-
ferent contexts to avoid significant intersection in the same
sub-spaces so that bounds placed over a given dimensional
space do not significantly degrade model accuracy while still
preserving the capacity for adversarial certification.

• A non-binary notion of similarity/dissimilarity will be de-
veloped from latent contextual information and taken into
account during embedding training.

Figure 13 demonstrates a low dimensional rough sketch of the
geometric intuition behind how a redistribution of vectors in a high
dimensional space could be beneficial to certified bounding and
accuracy.

5.4 Outline of Future Work Plan
5.4.1 Statistical Examination of GloVe Subtitle Subset. We are in

the process of completing the necessary code to comprehensively
calculate each pair of cosine distances for the GloVe subtitle subset,
both with and without counter-fitting and determine various statis-
tical measures of the embeddings, which were used in the Mrksic
work. A good deal of optimization is required to make this process
able to fit onto our server, but the most memory-intensive inter-
mediate steps have been optimized so that they fit on our server’s
main memory. No previous work has done this level of detailed
analysis of vanilla and counter-fitted embeddings to the best of our
knowledge, so such an analysis has academic value for other NLP
researchers as well. Once the processes have completed and we
have this data, we plan to examine how it limits the effectiveness
of IBP and whether the embedding topology is lacking in the ways
we postulated above. Having an understanding of the limitations of
counter-fitting when applied to static word embeddings will allow
us to construct a convincing argument for the development of a
new method.

5.4.2 Statistical Examination of a Representative Subset of BERT
Contextual Vectors. We also plan to examine how vanilla contextual
vectors are distributed throughout the embedding space. We have
provided a smaller examination of this and generated a number of
plots, shown in Figures 8-11. Similar to our planned examination
of the GloVe subtitle subset, we wish to unmask and examine the
contextual embedding topology to better understand how we can
allocate vectors in a way that is conducive for the application of
IBP to larger models.

5.4.3 Development of Contextual Counter-Fitted Vectors. After
we have learned the extent of the existing methods of counter-fitted
vectors, we can start to develop an intuition for the best ways to
restructure the distribution of vectors in the embeddings generation
process.

5.4.4 Application of Contextual Counter-Fitted Vectors to Current
Models. Once we have developed an intuition of how to apply the
tenets listed in the Embedding Generation Goals section, we will
test out our methods on current NLP architectures and other, more
complex models than IBP has previously been applied to. To this
end, we also plan to adapt the models used by Gowal et. al. in Figure
14.

6 CONCLUSION
Currently, the adversarial NLP space is composed of a large number
of attack works and a small number of defense works. We examined
how a promising defense like [12] performs on more complex mod-
els and tasks and discovered that embedding similarity distances
are correlated with the accuracy of a network trained using IBP.
Moving forward, we aim to evaluate IBP’s capabilities in language
modeling settings as well as question-answer tasks. Our future
endeavours will be guided by the concept of using better word
embeddings and contextual word embeddings to generalize to more
complex tasks to avoid increasing computational complexity.

7 CONTRIBUTIONS
While Matt was leading this project idea, each group member con-
tributed with a significant amount of experimentation and writing.
Matt adapted the codebase to allow the creation of multiple layers
of depth for the architectures used in the evaluation. Brian evalu-
ated the Amazon reviews dataset and the Twitter sentiment dataset
with the number of layers and the hidden neurons as parameters.
Rishabh worked on retraining a language model and obtaining the
embedding distances. Everyone contributed to the writing of this
report and the class presentations.
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