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Abstract—Performance of connected and autonomous
vehicles (CAVs) is limited by the amount of data that can
be collected for training their machine learning (ML) mod-
els. Current paradigms require expensive fleets of training
vehicles, or sharing customer data with original equipment
manufacturers (OEMs). These methods are expensive and
lead to privacy concerns. We propose DJGRAD, a novel
distributed ML protocol for distributed, asynchronous,
consensus-free, real-time training on consumer CAVs. Em-
pirical results show that our method is capable of learning
with strict real-time constraints, improves performance
over individually-trained models, and is resistant to black-
box adversarial attacks.

I. INTRODUCTION

A. Overview

Machine learning’s (ML) usage in modern vehicles
is becoming increasingly ubiquitous, especially with the
emergence of deep neural networks (DNNs). Currently,
original equipment manufactures (OEMs) such as Tesla,
GM, BMW, Nissan, and Volkeswagen are under constant
pressure from competitors, and are therefore incentivized
to constantly improve their ML models for connected
and autonomous vehicles (CAVs). Traditionally, OEMs
collect data from private CAV fleets or simulations [1,
2]. However, it is impossible to find every possible
corner case, so models will eventually meet a condition
that falls out of their training distribution. Current ML
theory assumes that data is independent and identically
distributed (i.i.d.), meaning that samples are drawn from
the same distribution and the value of the current sample
has no effect on the next sample drawn. Since ex-
trapolation violates this assumption (because the data
is outside of the training distribution) models cannot
reliably extrapolate to handle anomalous conditions.

Recent works have developed models that can handle
situations outside of its training distribution, so-called

Fig. 1: DJGRAD is a real-time distributed learning
protocol that utilizes DSRC to communicate directly
with neighboring vehicles, as opposed to leveraging cell
towers or the cloud. This avoids the need to share
data with OEMs and allows for consensus-free models
customized to each driver.

zero-shot methods [3] or bio-inspired networks [4], but
these methods perform worse in other conditions or re-
quire significantly more computing power. Furthermore,
it is unclear how these methods adapt to the reliability
needed in autonomous vehicle settings. Therefore, OEMs
are incentivized to collect data from consumer vehicles
to expand their datasets [5] to include millions of kilome-
ters of roads. For example, CAVs could continually send
driving data to a cloud server to train a centralized model.
However, privacy-conscious users may be reluctant to
share their data with an OEM. Additionally, a centralized
computing center would require significant upgrades to
communication infrastructure to handle massive data
transmissions. Utilizing a centralized model may reduce
a CAV’s performance in niche environments in favor of
generality.

Providing privacy-preserving, cost-efficient, and cus-
tomized user experiences with centralized models is



difficult. While federated learning (FL) seeks to alleviate
privacy concerns [6], this comes at the cost of accuracy
when training on heterogeneous data. Other work [7] has
shown that original data can still be reconstructed from
privacy-aware collaborative training schemes such as FL.

Alternatively, CAVs can improve their models in a dis-
tributed learning setting. These models are trained on the
user’s vehicle and share model parameters using vehicle-
to-vehicle (V2V) communication protocols. Cellular net-
works rely on a centralized and trusted entity, exhibit
high latency, and lack ubiquity, so dedicated short-range
communications (DSRC) are preferable. The trade-off
is that cellular networks have a wide area of coverage,
whereas vehicles with DSRC can only broadcast or send
unicast messages to vehicles within a range of about
300 m [8]. Since vehicles are geographically distributed
non-uniformly, we cannot guarantee that all updates to
model parameters will be shared with all other vehicles.
Therefore, the performance of a distributed protocol must
not rely on a consensus model, and decentralized FL
paradigms [9] cannot be used.

B. Goals

The goal of this project is to create a network protocol
capable of sending machine ML model updates between
CAVs that are level 2-4 (human-in-the-loop), without
the need for cloud communication or cellular networks
(Fig. 1). This protocol will ensure ML models in CAVs
will continuously perform well and adapt to local driving
environments. Parameter updates will propagate between
nearby CAVs while driving; thus, the proposed protocol
must be lightweight and runtime efficient.
The contributions of our work are as follows:
• We design and evaluate the efficacy of DJGRAD, a

real-time distributed learning protocol, in the context
of V2V communications. Specifically, we leverage the
WAVE (wireless access in vehicular environments)
short message protocol (WSMP) to advertise, request,
and send gradients between vehicles via DSRC. Our
evaluation finds that gradients can spread to over 90%
of vehicles in both a highway and downtown scenario,
even with a 10% packet drop rate.

• We evaluate the holdout performance of DJGRAD on
a regression task as a surrogate for Deep Q-Learning.
We show that DJGRAD improves performance over
independent models, even with imperfect commu-
nication. The statistical significance of DJGRAD’s
performance is similar to that of FL.

• We perform a security evaluation on DJGRAD and
find that it is resistant against attacks in the black-box

setting. The security evaluation consists of adapting
three types of attacks to the distributed learning set-
ting. These attacks seek to harm model performance,
inject hidden backdoors, and reconstruct training data.
While DJGRAD sacrifices some performance when
compared to federated learning, DJGRAD provides
higher security and privacy guarantees.

II. BACKGROUND

A. Machine Learning Primer

Consider a space Z of the form X × Y , where X is
the input/sample space and Y is the output space. For
example, in Section IV-C our experiments utilized inputs
of attributes such as weather, date, temperature, etc. and
outputs of number of bikes being used. In Section IV-D,
we consider the task of image classification where inputs
are images and outputs are labels categorizing these
images. Let H be a hypothesis space (e.g., the weights of
a DNN). We can create a loss function L : H×Z 7→ R
that measures the closeness of a hypothesis to a ground
truth. This learning algorithm results in a classifier F
which accepts an input x ∈ X , and outputs y ∈ Y .

B. Reinforcement Learning

Reinforcement learning (RL) is an AI technique in
which an agent learns how to interact with an environ-
ment based on the rewards it receives for its actions.
These rewards typically correspond with an action that
results in a positive outcome (positive reward) or a nega-
tive outcome (negative reward) for the agent in question.
Typically, RL requires a “model” of its environment so it
can make predictions and maximize its expected reward.
However, Q-Learning enables model-free RL by learning
a real-valued Q-function to optimize its prediction of
expected rewards. Deep Q-Learning uses a DNN to
estimate the Q-function.

C. Related Works

1) Federated Learning: Recent advances in machine
learning systems allow multiple data owners to engage
in collaborative training, or FL [10]. FL’s decentralized
training and global parameter aggregation provide data
owners with privacy guarantees not possible with tra-
ditional “data-aggregating” ML approaches. However,
most FL paradigms assume a centralized server to aggre-
gate parameter updates [11], and reliable communication
with edge devices. Although FL is more secure than
direct data transmission (because it does not explicitly
aggregate data), there are various exploits that extract
data from model parameters [12, 13], and vehicular



networks are notoriously unreliable [14]. There is recent
work on distributed FL [15] that address distributed
communication with intermittent connections, and asyn-
chronous FL [16] that allows for asynchronous parameter
updates over unreliable networks. However, even in
optimal conditions, a decentralized consensus model will
not be customized to individual user experiences.

2) Assisted Learning: Assisted learning [17] (AL) is
similar to FL, but does not intend to learn a consensus
model. Instead, each agent ai has its own goal Gi and
data Di that must remain private. Instead of sharing data
or model parameters, they share data IDs and residuals,
which allow them to train on an arbitrary Dj without hav-
ing direct access to it, or sharing Gi. This is excellent for
data privacy, but requires reliable connections and long-
term, full-duplex communication, which is not realistic
in CAVs. Also, note that in our setting ∀i, j Gi = Gj,
as all vehicles want to improve driving performance.
Therefore, AL enforces higher privacy constraints than
we need.

3) Gradient Updates: Many self-driving systems rely
on DNNs [18], which exhibit state-of-the-art perfor-
mance in many data-heavy ML applications. Their ex-
pressiveness comes from a chain of linear transforma-
tions and non-linear “activation functions,” which warp
a given dataset into a linearly-separable representation.
These linear transformations are expressed as m × n
matrices, where m and n are consecutive layers. Finding
analytical solutions to a network is impossible because
they are typically highly over-parameterized. Therefore,
models are usually updated using stochastic gradient
descent. During training, a model is used to generate
predictions using inputs. Residuals, an approximation for
error, can be calculated from the margin between the
predicted values and the true values. These residuals are
used to calculate gradients for each of the model weights.
These gradients are then used by the model to learn the
dataset and hypothesis classes. Gradient updates scale as
DNNs grow larger, so sharing updates between CAVs in
real-time becomes a challenging task.

Some distributed DNNs use aggregated gradients,
where the gradients are accumulated over several epochs
before being shared [19]. This can reduce network-
ing overhead, but can also lead to training instability
and suboptimal performance. Although this method de-
creases total network traffic, it still requires full gradient
updates to be transmitted. However, with DSRCs, our
main concern is the maximum transfer time, since two
vehicles are not guaranteed to remain in communication
range for more than a few seconds. Therefore, gradient

caching is not applicable here.
Previous work has attempted to sparsify gradient

matrices [20], as sparse matrices can be significantly
compressed. Early works drop gradients below a certain
threshold, but they tend to converge with suboptimal
performance [21]. Recent work has proposed a combina-
tion of gradient caching and sparsified gradients, where
small terms are added to the next gradient matrix rather
than being dropped [20]. However, current thresholding
techniques do not guarantee a consistent number of non-
zero terms [20] and therefore is not conducive to real-
time communication.

III. PROPOSED DESIGN

A. Transmission Requirements

To ensure rapid propagation of model updates, V2V
transmission must be reliable in many driving conditions.
To keep the packet drop rate of DSRC below 10%, we
limited our transmission radius to 100 m [22]. DSRC can
transmit at rates anywhere between 6 and 27 Mbps [23],
with a maximum transmission latency of 150 ms [8].
Because of packet drops and transmission rates that can
vary based on vehicle proximity, speed, and occlusions,
we did not assume a fixed transmission rate of data.
Instead, we parameterized based on the successful trans-
mission time (STT).

If a vehicle must send a total of N valid gradient
messages and it takes ti seconds to send message i, the
STT can be calculated as the discontinuous sum of the
time it takes to send these packets.

STT =
N∑

i=1

ti (1)

For example, we might require a vehicle to have an STT
of 1 second, meaning the total transmission time could
be greater than 1 due to dropped packets, but the total
discontinuous sending time of valid gradient messages
packets is exactly 1 second.

Furthermore, DSRC uses WSMP messages for com-
munication, so any transmitted messages must use this
same protocol. A very common message that uses
WSMP is the basic safety message (BSM), which is
used for safety-critical communication such as sharing
vehicle position and velocity. WSMP also supports non-
critical message types, such as the WAVE service adver-
tisement (WSA) [24]. Finally, for sending generic data,
WSMP supports the standardized WAVE short message
(WSM) [25]. Since our protocol is not critical to the
safety of the driver and we need to send non-standard
gradient data, we limited ourselves to WSAs and WSMs.



B. Network Protocol

Since our setting assumes level 2-4 CAVs, we assume
that our ML model is an RL algorithm [26], ideally
using Deep Q-Learning with user interaction as negative
reinforcement1. User intervention triggers local model
updates, generating a new set of gradients θδ which
are sparsified and stored for transmission. Whenever the
CAV receives a sparse gradient matrix θ̂δ from another
vehicle, it applies the updates and stores them in a
queue for transmission. Our protocol uses the following
features to ensure model performance:

1) Sparse Gradients: As θδ is calculated, it is split
into a disjoint set of sparse gradients (henceforth simply
referred to as gradients) such that2:

θδ =
m∑
i

θ(i)
δ | ∀i, j, i 6= j ⇐⇒

(
θ(i)
δ � θ

(j)
δ = 0

)
For example:[

1 1
1 1

]
︸ ︷︷ ︸

θδ

=
[

0 1
1 0

]
︸ ︷︷ ︸

θ(1)
δ

+
[

1 0
0 1

]
︸ ︷︷ ︸

θ(2)
δ

The cardinality m of the partition for each full gradient
is a tunable hyperparameter. Each time CAV at interacts
with CAV ar, a random θ(i)

δ is transmitted. Since these
gradients will be forwarded by other CAVs, the full gra-
dients will eventually propagate through the environment
and all CAVs will theoretically apply the full update θδ .

2) Vehicle Handshaking: Broadcasting full gradients
would be data intensive and inefficient. Instead, a vehicle
with gradients (the ego vehicle) periodically broadcasts
a WSA, indicating it has gradients to share. The message
contains a unique identifier that other vehicles can use
when requesting. Once a vehicle receives the WSA, it
may send a request message (in the form of a WSM)
back to the ego vehicle; the WSM contains the original
unique identifier. Finally, the ego vehicle transmits θ(i)

δ as
a unicast message back to each vehicle i that requested
gradients.

3) Gradient Forwarding: Once vehicle i has received
the gradients, it can start broadcasting WSAs of its own.
θ(i)
δ is also added to a forwarding queue Qf , which holds

outgoing gradients. If Qf is full, the first element is
popped off. This provides a delay before transmitting
gradients, so that CAV ar will forward to CAVs that
have not already received θ̂δ from at.

1In order to meet the scope of the project, we assume that all CAVs
have the same ML model architecture.

2Note that � represents the Hadamard product.

4) Interaction List: Each CAV ai maintains a queue
Q(i)

v of vehicles that it will not communicate with.
Every time CAVs at, ar interact, at is added to Q(r)

v
and vice versa. If Q(i)

v is full, the top vehicle will be
removed. This prevents two CAVs from engaging in an
infinite loop of gradient forwarding, since they will only
communicate once. The length of this queue is a tunable
hyperparameter.

5) Model Update: Gradient updates must happen
quickly for safety reasons. Therefore, updates will be
applied to a duplicated set of weights held in memory,
and the model will load the new set of weights in
between execution cycles. The duplicate weights will
double the amount of space required for storing model
weights (2GB of space in the most extreme cases).
This overhead may cause the model to miss a frame.
However, a CAV’s automatic braking system (ABS) is
not connected to its self-driving system and will not be
impacted.

A flowchart of the full protocol is shown in Appendix
A (Fig. 9).

IV. METHODOLOGY

A. Experiment Designs

We are interested in understanding the following as-
pects of our protocol:

1) Networking: How well do model gradients spread
in realistic driving environments? Veins (Vehicles
in Network Simulation) is a bidirectionally coupled
simulation framework integrating both a traffic simu-
lator and a network simulator [27]. We implemented
the V2V communication aspect of our protocol and
simulated it to quantify how gradients propagate
throughout the network of CAVs.

2) Learning: Does our distributed learning proto-
col positively impact learning? We constructed a
composite model in TensorFlow [28], providing each
sub-model with a non-i.i.d. subset of training data
and simulating sparse gradient transfers during the
centralized training step. In Section V-B, we demon-
strate that this results in improved individual and
generalized performance over individual models with
non-i.i.d. datasets. We use low-dimensional regression
datasets (non-vehicular) to shorten simulation times
and emulate Deep Q-Learning.

3) Security & Privacy: How can a malicious vehicle
attack other vehicles by exploiting this distributed
learning protocol? More specifically, we are inter-
ested in learning how to harm the performance of other



vehicles’ models, inject backdoors into other vehicles’
models, and steal data from received gradients. This
was evaluated by performing existing attacks on our
protocol in a setting where the adversary does not
have access to other vehicles’ models (black-box
setting) [12, 13].

B. Networking

To understand the V2V communication aspect of
our protocol, we leveraged simulation since it was not
feasible to study it with actual vehicles. Two main
components were required to replicate our protocol:
a traffic simulator and a networking simulator. For
the traffic simulator we used SUMO (Simulation of
Urban Mobility) [29]. For the network simulator, we
used OMNeT++ (Objective Modular Network Testbed
in C++) [30]. These two simulators cannot communicate
directly, but Veins is specifically designed for this [27].
Therefore, we leveraged Veins to help us assess how
well gradients could propagate throughout the vehicular
network.

1) Traffic Simulator: The traffic simulator is neces-
sary to allow the vehicles in the simulation to drive on
roads just like they would in the physical world. Roads
can be created using nodes and edges, but instead we
leveraged OpenStreetMap data for more realistic driving
scenarios [31]. For variability, we chose two maps, one
of a highway and one of a downtown area, both in the
greater Minneapolis area of Minnesota. The highway
map we used is shown in Fig. 2.

The advantage of the highway scenario is that vehicles
are near one another for longer, giving them more time to
communicate with each other. However, due to the linear
nature of highways, a given vehicle may not interact with
as many different vehicles, potentially limiting its ability
to obtaining gradients. The advantage of the downtown
scenario is that a given vehicle will pass by many other
vehicles, giving it more chances to pass a vehicle with
gradients. However, due to the variety of paths any given
vehicle may take, this can limit how long a vehicle is
next to another vehicle.

Once we imported the OpenStreetMap data into
SUMO, random vehicle routes were created using
SUMO’s randomTrips.py and duarouter scripts.
These scripts output XML files that are parseable by
OMNeT++.

2) Integrating with Network Simulator: We coded
our protocol in C++ using libraries provided by Veins.
Their libraries include models of IEEE 802.11p and
IEEE 1609.4 DSRC/WAVE [27], which were essential

Fig. 2: OpenStreetMap map used for highway scenario.

Fig. 3: Simulation of downtown scenario. Circles repre-
sent 100 m communication range. Vehicles shaded blue
have gradients and vehicles shaded gray do not.

for mimicking the behavior of DSRC in our vehicu-
lar network. Classes are included that implement the
DSRC/WAVE stack, but we had to implement functions
to define the behavior of vehicles every time they entered
the scene, their position changed, they received a WSA,
they received a WSM, or they received a signal to
send a message. Furthermore, we wrote specific message
structures for our custom WSMs: one for the request
message and one for the gradient message. The behavior
of the vehicle when receiving a request WSM, naturally,
had to be programmed differently than the behavior when
receiving a gradient WSM.

We created two applications, one which required
vehicles to have an STT of 1 second and another
which required vehicles to have an STT of 2 seconds.



As demonstrated by Eq. (1), the longer the STT, the
larger the gradients are assumed to be. Testing two STT
values allowed us to test our hypothesis that gradients
need to be kept as small as possible (i.e., sparsified).
For further details of our applications, please see the
veins-dsrc/src/ folder on our GitHub page.3

3) Setting up the Simulations: Once our applications
were written, an omnetpp.ini file was created for
both the highway and downtown scenarios. This file
allows for configuration of different settings for the
simulation. For all of our simulations, one vehicle started
with gradients, the WSA periodicity was set to 10
seconds, the communication range was set to 100 meters,
channel switching was enabled, and the simulation time
was set to 1,000 seconds. A launch configuration file
determined which scenario to run. The packet drop rate
was controlled by changing the frameErrorRate of
the MAC layer. For our experiments, we used values
of 0% and 10%. With two variables to study (STT
and packet drop rate), each with two different val-
ues, this led to four experiments for each of our two
scenarios. One of our simulations for the downtown
scenario is shown in Fig. 3. Further details of our
simulations can be found on our GitHub page in the
veins-dsrc/simulations/ folder.

C. Learning

1) Simplifications: It is common for CAVs to each
have several GPUs for ML inference [32], making it
impossible to simulate thousands of CAVs with realistic
ML models. Therefore, we perform our learning simu-
lations with four CAVs, which each have a simplified
model. This allows us to run all simulations on a single
NVIDIA RTX 3080. Real-time negative reinforcement
from drivers is infeasible, so we treat each CAV as an
unmoving graph node with a static dataset. Since they
are not moving, each CAV will communicate with a
predefined set of “neighbor” CAVs (see Fig. 4).

2) Datasets: Because we are running several ML
models on a single consumer-level GPU, we need a low-
dimensional dataset (few features) with patterns that can
be learned by a shallow neural network (NN). Addition-
ally, we are simulating Deep Q-Learning (real-valued
output), so the dataset must contain real-valued labels.
This dataset must also be large enough to split into four
parts without impacting training. We used the UCI Bike
Sharing Dataset [33], which has 14 features and 17,389

3https://github.com/m4ttr4ymond/DJGrad

Fig. 4: Four simulated CAVs, each forwarding gradients
to its two closest neighbors with a probability p (hyper-
parameter). Each vehicle has access to data from 1 of 4
different 6-hour time blocks (e.g., [0 – 5]).

samples. Since this dataset is i.i.d., we impose a non-
i.i.d. distribution by splitting the dataset based on the
time of day each measurement was taken (0:00-5:00,
6:00-11:00, 12:00-17:00, and 18:00-23:00). This leaves
us with approximately 4,000 samples per data subset.

3) Training: All simulations were implemented in
TensorFlow using the Keras library [34]. We extended
the base model class to contain four submodels, which
each trained on their own data subset. On evaluation,
each submodel was tested on holdout data that was
representative of the original (non-split) dataset. We used
this paradigm to implement independent models (no
sharing), FL (sharing all gradients immediately), and
DJGRAD (sharing sparse gradients with a delay). Our
implementation of DJGRAD includes all features de-
scribed in our gradient forwarding protocol, and includes
a hyperparameter p that determines the probability that a
sparsified gradient will not be dropped while being for-
warded. During training, each model’s “gradient sharing
protocols” were executed after each batch. Each model
was simulated for 4,000 epochs, taking approximately 6
hours per simulation.

4) Evaluation: We evaluated our model on an i.i.d.
holdout dataset, and computed the holdout loss at every
epoch.

D. Security & Privacy

1) General Assumptions: In the scenario where a
malicious driver exploits the gradient sharing protocol to
harm other models or steal data, we need to understand
how our protocol functions under these attack assump-
tions. In the most realistic scenario, an adversary is

https://github.com/m4ttr4ymond/DJGrad


assumed to be operating under a black-box attack setting
where it has access to their own vehicle’s models and
any gradients sent or received. However, the adversary
can still employ black-box attacks on other vehicles’
models by performing attacks on their own model as
a sort of “surrogate model”. As a baseline comparison,
experiments will be performed in the white-box setting
as well, where the adversary has access to all data, gra-
dients, and models. The attacks are formulated using the
same 4-vehicle simulation as denoted in Section IV-C.
Additionally, as we were unable to successfully attack
our protocol when using disjoint gradient subsets, we
assume that the full gradients are shared in each attack
scenario. In the following sections, we detail the three
types of attacks constructed for our protocol with the
intention of: harming the performance of other vehicles’
models, injecting backdoor triggers in other vehicles’
models, and reconstructing training data from gradients
received by the adversary’s vehicle.

2) Models and Datasets: In our experiments, we
explore the efficacy of these attacks in the context
of the image classification task, using datasets such
as MNIST [35] and CIFAR-100 [36]. Our protocol,
DJGRAD, leverages small 4-layer (LeNet [37]) and 7-
layer convolutional neural networks (CNNs).

3) Harm Performance: The subject of adversarial
machine learning and robust classification has been stud-
ied extensively in the past [38]. An area of particular
interest is attacking models by degrading performance.
For example, Xiao et al. [39] perform label-flipping
attacks on support vector machines (SVMs). Instead
of flipping labels, we can similarly attack DNNs by
computing gradients from inverted loss metrics –L. For
this attack scenario, we train the DNNs of each vehicle
using 8 epochs in our distributed learning setting, each
achieving accuracies of more than 98%. Afterwards,
we pollute and distribute gradients to other vehicle
models in both the white-box and black-box settings.
Reproducing this attack is available in our GitHub page
in the security/ folder.

4) Inject Backdoors: Here the adversary wishes to
compute a poisoned set of gradients θδ that, when
applied to a ML model F, result in maliciously injecting
backdoors for certain triggers λ. The presence of the
backdoor trigger in an input, xi + λ causes the model
to output a particular target label yt. An example of a
backdoor trigger is given in Fig. 5. Previous work has ex-
plored poisoning data through backdoor attacks [40, 41]
as well as data poisoning attacks in federated learning
settings [42, 43]. Once again, after training for 8 epochs,

Fig. 5: An example of a backdoor trigger inserted into
the input sample.

we poison inputs, compute gradients, and distribute the
poisoned gradients to other vehicle models in both the
white-box and black-box settings. Reproducing this at-
tack is available in our GitHub page in the security/
folder.

5) Steal Data: The final attack we are interested in
is the case where an adversary reconstructs the original
input data to a DNN using only the gradients and a
model. This technique was discovered by Zhu et al. [7]
and showed that data could still be leaked even when
FL is employed. The algorithm to reconstruct data uses
randomly initialized “dummy data”, an optimization pro-
cedure known as gradient matching. Zhu et al. already
evaluate their method on sparsified and compressed
gradients and find that they are unable to recover data
when sparsity reaches 20% or more. To convert this
attack scenario into the black-box setting, we initialize
the weights of multiple DNNs to the same randomized
values (between -0.5 and 0.5). Afterwards, we perturb the
weights of the “victim model” by a threshold ε. Finally,
using 10 initializations, we attempt to reconstruct the
original data from the received gradients using only the
“surrogate model”. Reproducing this attack is available
in our GitHub page in the security/dlg/ folder.

V. RESULTS

A. Networking

1) Highway Scenario: The results from our highway
scenario simulations are shown in Table I. For plots of
the percent of vehicles with gradients over the entire
duration of the simulations, see Fig. 10 in Appendix B.
For the simulation with a 1 second STT and 0% packet
drop rate, 91.94% of the vehicles had gradients. This
demonstrates that the gradients spread very well. We
were not anticipating achieving 100% spread because
some vehicles exited very early in the simulation before



Highway Scenario STT
1 s 2 s

Packet Drop Rate 0% 91.94% 34.41%
10% 90.86% 29.68%

TABLE I: Simulation results from highway scenario
using different values of successful transmission time
and packet drop rate. Values indicate the percentage of
vehicles at the end of the simulation with gradients. Each
simulation was run for 1,000 seconds.

Downtown Scenario STT
1 s 2 s

Packet Drop Rate 0% 93.40% 46.53%
10% 92.19% 6.94%

TABLE II: Simulation results from downtown scenario
using different values of successful transmission time
and packet drop rate. Values indicate the percentage of
vehicles at the end of the simulation with gradients. Each
simulation was run for 1,000 seconds.

they came within range of the vehicle that started with
gradients.

When we increased the STT to 2 seconds, the per-
centage of vehicles with gradients dropped to 34.41%.
This is not too surprising as it doubled the amount of
time vehicles had to be within range of each other.
When vehicles are driving opposite directions on the
highway, it is not unreasonable to expect 1 second of
interaction between them, but 2 seconds is less common.
This solidifies our hypothesis that gradients need to be
sparsified as much as possible to keep the STT as small
as possible. However, we were still pleased with the
result of 34.41% because without our protocol, vehicles
would not share any of their gradients.

Increasing the packet drop rate to 10% did not have
as much of a negative impact as we expected. The
percentage of vehicles with gradients at the end of
the simulation only dropped slightly as a result of this
parameter change. Despite the 10% packet drop rate,
more than 90% of the vehicles had gradients at the end
of the simulation for the 1 second STT simulation and
almost 30% of the vehicles had gradients for the 2 second
STT simulation.

2) Downtown Scenario: The results from our down-
town scenario simulations are shown in Table II. For
plots of the percent of vehicles with gradients over
the entire duration of the simulations, see Fig. 11 in
Appendix B. As mentioned earlier, the downtown sce-
nario differs from the highway scenario in that vehicles
drive past more vehicles, but are not next to them

for as long. Based on our results, the fact that the
vehicles were passing other vehicles more often helped
the gradients spread more. This makes sense because
the initial vehicle was able to pass the gradients to more
vehicles at the beginning of the simulation, thus allowing
the gradients to reach vehicles that may have otherwise
left the simulation too early.

It is worth noting that the one experiment where
the downtown scenario performed (significantly) worse
than the highway scenario was for the 2 second STT
simulation with 10% packet drop. This is likely because
of the fact that most vehicles are not near one another
for long enough to transmit gradients in time if too
many packets are dropped. This limits the amount of
successful exchanges between vehicles and thus results
in the very low percentage of 6.94%. Again, this proves
our argument that gradients must be sparsified as much
as possible.

B. Learning

Plots of the holdout loss for each epoch are in Ap-
pendix C (Fig. 12). The results for the final training
epoch can be seen in Table III. To verify that our results
were significant, we ran a Wilcoxon non-parametric
hypothesis test [44], as seen in Table IV.

C. Security & Privacy

Overall, attacks performed in the black-box setting
of DJGRAD are less effective than in the white-box

Car Hours None Fed DJG(1.0) DJG(0.9)

1

[0,5] 1.25 1.70 1.05 1.53
[6,11] 117.04 3.48 101.37 109.88
[12,17] 176.32 5.34 155.14 164.28
[18,23] 132.65 3.82 113.76 126.27

2

[0,5] 12.80 1.70 7.96 11.67
[6,11] 18.88 3.48 11.39 8.93
[12,17] 78.83 5.34 54.42 41.66
[18,23] 69.10 3.82 48.29 42.19

3

[0,5] 36.99 1.70 34.97 23.00
[6,11] 12.05 3.48 18.22 12.42
[12,17] 7.14 5.34 22.77 12.65
[18,23] 13.53 3.82 20.09 12.34

4

[0,5] 37.15 1.70 42.49 50.35
[6,11] 121.52 3.48 134.95 180.98
[12,17] 54.04 5.34 55.33 88.36
[18,23] 14.62 3.82 11.23 14.45

TABLE III: Simulation results from training models
using no sharing (“None”), FL (“Fed”), and our proposed
method with p = k (“DJG(k)”). Each method was run for
4,000 epochs. First and second lowest loss are bolded
and underlined, respectively.



Baseline Alternative P-Value

None
Fed 0.125 0.0625 0.0625 0.0625

DJG(1.0) 0.0625 0.0625 0.9375 0.875
DJG(0.9) 0.125 0.0625 0.4375 0.9375

TABLE IV: P-values for each car (1-4) given a baseline
method and an alternative. H1 is that the alternative
method achieves a lower loss than the baseline. H0 is
that they are the same.

setting. We find that in a gradient sharing protocol,
carefully crafted gradients can still harm performance,
inject backdoors, and steal data, albeit with less efficacy.
In each scenario, “Model 1” is the ego or adversarial
vehicle.

1) Harm Performance: The formulated attack is ef-
fective in both the white-box and black-box settings,
although a larger number of malicious gradients is re-
quired to reduce performance in the black-box setting
(Fig. 6). Note that the number of samples required to
degrade performance below 50% accuracy is on the order
of thousands in both settings.

2) Inject Backdoor: Using the gradient poisoning
technique to inject backdoors into models is shown to
be quite effective in both settings, achieving greater
than 30% backdoor trigger efficacy with fewer than 15
samples (Fig. 7). However, the attack in the black-box
setting limits this threat to a maximum of around a 30%
backdoor efficacy.

3) Steal Data: The major limitation of the gradient
reconstruction attack lies in its ability to steal data in the
black-box setting. While the attack is able to reconstruct
nearly 100% of the original data in the white-box setting,
it is only able to reconstruct data in the black-box
setting if the “victim and surrogate models” have similar
weights. To quantify the similarity, weights are randomly
instantiated (–0.5, 0.5) and copied. The weights of the
surrogate model are then randomly altered by a small
ε < 0.015 value. We find that weights differing by
ε ≤ 0.0115 can recover the majority of data, whereas
weights differing by ε > 0.0115 can only recover few
samples (Fig. 8).

4) Defenses: While the attacks on DJGRAD were
shown to be somewhat effective with limitations, the
robustness of DJGRAD could be further improved by
adding simple defense mechanisms against these attacks.
Anomaly detection systems could be applied to detect
harmful or poisoned gradients. Alternatively, vehicles
could create copies of their models before applying gra-
dients. If the application of any received gradients proves

(a) White-box (b) Black-box

Fig. 6: Attacks in the distributed learning setting which
harm performance of other vehicles’ models.

(a) White-box

(b) Black-box

Fig. 7: Attacks in the distributed learning setting which
inject backdoor triggers in other vehicles’ models. Left:
Natural accuracy, Right: Backdoor trigger efficacy.

harmful, the vehicle can easily revert to the backup
model state. These defenses would mitigate the threat
of an adversary wishing to do harm, though it would not
provide guarantees against an adversary reconstructing
or stealing data from gradients.

VI. DISCUSSION

A. Limitations

In our experiments involving ML models, we did
not use realistic autonomous vehicle datasets or ML
architectures. Our simulation of sparse gradient learning
did not have many vehicles, and was too slow to simulate
more than a few hyperparameter values. Additionally, we



Fig. 8: Attacks in the distributed learning setting which
reconstruct data using other vehicles’ gradients. The
efficacy decreases with larger ε.

would have liked to evaluate the ML model performance
and security using a more fine-grained analysis from our
vehicle network simulations.

B. Future Work

1) Networking: To further analyze the variables that
impact the efficient spread of gradients throughout the
vehicular network, other parameters in the simulations
could be modified. Such parameters include vehicle
speed, traffic density, and WSA periodicity.

2) Learning Simulations: In future works, we will
utilize realistic autonomous vehicle datasets/simulators
such as [45] and larger DNN architectures for Deep Q-
Learning such as [46]. We will extend our ML simula-
tions to include tens of cars, rather than four, and eval-
uate with more dropping parameters. However, before
working on any additional implementations, we intend
to develop a robust theoretical framework to analyze our
problem statement and provide mathematically-verifiable
guarantees in place of our current heuristics.

3) Security & Privacy: More work can be done
exploring attacks and defenses in the setting of our
protocol. For example, our backdoor injection could
leverage more recent advances in data poisoning attacks
such as the attacks from Turner et al. [41].

VII. CONCLUSION

We propose and implement a distributed, asyn-
chronous, consensus-free, real-time protocol for training
ML models on consumer CAVs. Through simplified
simulations, we show the following:

• Gradients can efficiently spread throughout vehicu-
lar networks if they are sparsified enough to only
require an STT of 1 second, even with a packet drop
rate of 10%.

• DJGRAD outperforms individually-trained NNs, as
verified by a statistical hypothesis test, and is robust
to dropped/lost gradients.

• DJGRAD is robust against attacks in the black-box
setting, and defenses can be created against the 3
formulated attacks.
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APPENDIX A
FLOW CHART

Fig. 9: Flowchart of our proposed DJGRAD protocol.



APPENDIX B
NETWORK SIMULATION PLOTS

Fig. 10: Plots of our four highway experiments over the
duration of 1,000 seconds. Graphs show percentage of
vehicles in simulation with gradients out of the number
of vehicles that have arrived in the scene.

Fig. 11: Plots of our four downtown experiments over the
duration of 1,000 seconds. Graphs show percentage of
vehicles in simulation with gradients out of the number
of vehicles that have arrived in the scene.



APPENDIX C
LOSS PLOTS

Fig. 12: Loss plots (RMSE) of the model for each car over 4,000 epochs. The training class for each car is
represented as a solid line, and the other classes as dotted lines.
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